Parasite glycoconjugates. Part 8.¹ Chemical synthesis of a heptaglycosyl triphosphate fragment of *Leishmania mexicana* lipoand proteo-phosphoglycan and of a phosphorylated trisaccharide fragment of *Leishmania donovani* surface lipophosphoglycan

Adrian P. Higson,^{*a*} Yury E. Tsvetkov,^{*b*} Michael A. J. Ferguson^{*c*} and Andrei V. Nikolaev^{*,*a*}

^a Department of Chemistry, University of Dundee, Dundee, UK DD1 4HN

^b N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

^c Department of Biochemistry, University of Dundee, Dundee, UK DD1 4HN

The phosphorylated branched heptasaccharide β -D-Galp-(1 \rightarrow 4)- α -D-Manp-(1-PO₃H-6)-[β -D-Glcp-(1 \rightarrow 3)]- β -D-Galp-(1 \rightarrow 4)- α -D-Manp-(1-PO₃H-6)-[β -D-Galp-(1 \rightarrow 4)- α -D-Manp-1-PO₃H-O[CH₂]₈CH=CH₂, which is a fragment of the phosphoglycan portion of *Leishmania mexicana* lipophosphoglycan and proteophospho-glycan, has been synthesized using the thioglycoside and Helferich methods for the glycosylations and the glycosyl hydrogenphosphonate method for the successive introduction of the disaccharide phosphate and trisaccharide phosphate blocks.

Introduction

The Leishmania are sandfly-transmitted protozoan parasites that cause a variety of debilitating and often fatal diseases throughout the tropics and the sub-tropics. All life-cycle stages of all species of the Leishmania synthesize large amounts of glycoconjugate virulence-factors that contain phosphosaccharide repeating units of $[6-(R\rightarrow 3)-\beta-D-Galp-(1\rightarrow 4) (R' \rightarrow 2)$ - α -D-Manp-(1-PO₃H-]_n. These glycoconjugates include the most abundant surface molecule of the infectious metacyclic promastigote stage of the parasite, the lipophosphoglycan (LPG)²⁻⁴ and secreted proteophosphoglycans (PPG) such as acid phosphatase⁵ and the amastigote filamentous mucin-like PPG.⁶ The nature of the R and R' groups varies according to the species of Leishmania. For example, in L. donovani² R = R' = H, whereas in L. Major^{2,6} R' = H and R is mostly mono-, di- or tri-saccharide made up of β -D-Galp and β-D-Arap residues. In *L. aethiopica*³ R is mostly β-D-Galp or β-D-Galp-(1 \rightarrow 3)- β -D-Galp, but R' is α -D-Manp (35%) or H (65%). In the LPG and PPG produced by L. mexicana^{4,5} R' is H (100%) and about 20-25% of the D-galactose residues are substituted at O-3 with β -D-glucopyranose.

We have recently described chemical syntheses of oligosaccharide fragments (including compounds 1–4) of the LPG of *L. donovani*^{7,8} and *L. major*⁹ and the polymeric phosphoglycan chain of *L. donovani* LPG.¹⁰ Compounds 1–4 were tested *in vitro* as acceptor substrates for the *Leishmania* α -D-mannopyranosyl phosphate transferase (MPT) responsible for the transfer of α -D-Manp phosphate from GDP-Man to the growing phosphoglycan chain of the LPG. It has been shown¹¹ that the phosphorylated oligosaccharides 1, 3 and 4 are efficient exogenous acceptor substrates for the MPT and that the nonphosphorylated disaccharide 2 is inactive.

We now report the chemical synthesis of the branched heptaglycosyl triphosphate fragment 5 of the phosphoglycan portion of *L. mexicana* LPG and PPG and the linear trisaccharide phosphate fragment 6 of the phosphoglycan chain of *L. donovani* LPG. Both compounds contain a dec-9-enyl moiety that assists biochemical assays, and are designed to be used for further studies of *Leishmania* biosynthetic enzymes.

 β -D-Galp-(1 \rightarrow 4)- α -D-Manp-1-PO₃H-OR

1

H-[6)-β-D-Galp-(1→4)- α -D-Manp-(1-PO₃H-]_n-6)-β-D-Galp-(1→4)- α -D-Manp-OR

2 n = 0 **3** n = 1 **4** n = 2

 β -D-Galp-(1 \rightarrow 4)- α -D-Manp-(1-PO₃H-6)- β -D-Galp-(1 \rightarrow 4)-

 $|_1$ β -D-Glcp

 α -D-Manp-(1-PO₃H-6)- β -D-Galp-(1 \rightarrow 4)- α -D-Manp-1-PO₃H-OR 5

 α -D-Man*p*-(1-PO₃H-6)- β -D-Gal*p*-(1 \rightarrow 4)- α -D-Man*p*-OR 6 R = [CH₂]₈CH=CH,

Results and discussion

A retrosynthetic analysis of the heptaglycosyl triphosphate **5** shows that it can be prepared by stepwise chain elongation from dec-9-en-1-ol using the disaccharide H-phosphonate **7** and trisaccharide H-phosphonate **8** (Scheme 1) for the consecutive introduction of the glycobiosyl and glycotriosyl phosphate fragments. The glycosyl hydrogenphosphonate method^{7,12} can be used for the construction of the phospho-diester linkages.

The disaccharide H-phosphonate **7** has been described by us recently.⁷ In the context of preparation of the trisaccharide H-phosphonate **8**, two galactosylmannose derivatives **11** and **17** (Scheme 1) were synthesized. They differ by the temporary protection on O-3' (the position to be glycosylated) and O-6' (the position to be phosphorylated).

Glycosylation of 1,2,3,6-tetra-*O*-benzoyl- α -D-mannopyranose⁷ 10 with 2,4-di-*O*-benzoyl-3-*O*-benzyl-6-*O*-(*tert*-butyldiphenylsilyl)- α -D-galactopyranosyl trichloroacetimidate⁹ 9 in the presence of triethylsilyl triflate gave the β -(1 \rightarrow 4)-linked disaccharide 11 (55%) together with some (14%) of the α -linked isomer 13. The disaccharide 17 was prepared from ethyl 2-*O*-benzoyl-4,6-*O*-benzylidene-3-*O*-chloroacetyl-1-thio- β -D-

Where $CA = CICH_2CO$, DMT = p, p'-dimethoxytrityl

Scheme 1 Reagents: i, Et₃SiOSO₂CF₃, CH₂Cl₂; ii, ClCH₂COCl, pyridine, CH₂Cl₂; iii, PhCOCl, pyridine, CH₂Cl₂; iv, MeOSO₂CF₃, CH₂Cl₂, MS 4Å; v, (NH₂)₂CS, 2,6-lutidine, MeOH, CH₂Cl₂

galactopyranoside **16**, which in turn was synthesized by way of consecutive 3-*O*-chloroacetylation and 2-*O*-benzoylation of the thiogalactoside **14**.¹³ Coupling of the mannose acceptor **10** with the thiogalactoside donor **16** was accomplished in the presence of methyl triflate to give the β - and α -linked disaccharides **17** and **19** in yields of 53 and 23%, respectively.

Only the disaccharide 17 was used further for the preparation of the trisaccharide derivative 22, since we have shown recently⁹ that glycosylation of the disaccharide acceptor 12, which is a

close structural analog of debenzylated compound **11**, was not highly effective and stereoselective.

Dechloroacetylation of compound **17** with thiourea and 2,6dimethylpyridine (2,6-lutidine) gave the monohydroxylic derivative **18** in excellent yield. Glycosylation of the acceptor **18** with benzobromoglucose **20** in the presence of $Hg(CN)_2$ -HgBr₂ in acetonitrile (Scheme 2) proceeded smoothly and produced

Scheme 2 Reagents: i, AgOSO₂CF₃, 2,6-di-*tert*-butylpyridine, CH₂Cl₂, MS 4 Å; ii, Hg(CN)₂, HgBr₂, MeCN; iii, 80% aq. AcOH; iv, (*a*) p,p'-dimethoxytrityl chloride, pyridine; (*b*) PhCOCl, pyridine; v, Me₂NH, MeCN–THF; vi, (*a*) triimidazolylphosphine, MeCN; (*b*) Et₃NHHCO₃, water (pH 7)

exclusively the β , β -linked trisaccharide **22** (82%). Similar condensation in the presence of silver triflate and 2,6-di-*tert*butylpyridine resulted in the trisaccharide orthoester **21** as a major product (80%) together with some (15%) of the glycoside **22**.

The ¹H NMR spectrum of the trisaccharide **22** revealed characteristic signals for all three monosaccharide residues (see Experimental section). The β -configuration of the D-Galp and D-Glcp units followed from the characteristic value (7.8 Hz) of the corresponding $J_{1,2}$ -coupling constants.

The presence of the orthoester linkage in the derivative **21** was confirmed by the specific hydrolysis test for orthoesters (treatment with 0.05 mol dm⁻³ aq. H_2SO_4 in acetone),¹⁴ which afforded 2,3,4,6-tetra-*O*-benzoyl-D-glucose and the

Scheme 3 Reagents: i, (a) adamantane-1-carbonyl chloride, pyridine; (b) I₂, pyridine-water; ii, TFA, CH₂Cl₂; iii, NaOME, MeOH

disaccharide **18** indicated by TLC. The α -configuration of the D-Glc*p* moiety was evident from the characteristic values of (1) the $J_{1',2'}$ -coupling constant (5 Hz) in the ¹H NMR spectrum and (2) the chemical shift of C-1" ($\delta_{\rm C}$ 97.61) in the ¹³C NMR spectrum of the trisaccharide orthoester **21**.

The unusual values (for the ${}^{4}C_{1}$ -conformation) of the $J_{2',3''}$ and $J_{3'',4''}$ -coupling constants (3.0 and 1.5 Hz, respectively) suggest that the conformation of the D-Glcp unit is close to a half-chair ${}^{0}H_{5}$, where both H2"–H3" and H3"–H4" are anticlinal.

The trisaccharide **22** was converted into the 6'-*O*-dimethoxytrityl (DMT) derivative **24** (86%) by O-debenzylidenation with 80% acetic acid, followed by treatment of the resulting diol **23** first with DMTCl in pyridine and then with benzoyl chloride in pyridine. The trisaccharide **24** was selectively 1-O-debenzoylated with dimethylamine in acetonitrile^{7,12} to give the α hydroxy derivative **25** (88%), which on phosphitylation^{7,12} with tri-imidazolylphosphine (prepared *in situ* from PCl₃, imidazole and Et₃N) and mild hydrolysis gave the H-phosphonate block **8** in 87% yield. Signals characteristic of the H-phosphonate group [δ_P 0.56; δ_H 5.71 (dd, $J_{1,2}$ 1.8, $J_{1,P}$ 9.0, 1-H), 7.00 (d, ${}^{1}J_{H,P}$ 631.2, HP)] were present in the ${}^{31}P$ and ${}^{1}H$ NMR spectra of the trisaccharide **8**. The α -configuration of the D-mannopyranosyl residue followed from the characteristic positions of the 1-, 3- and 5-H resonances (see Experimental section).

The protected heptasaccharide triphosphate 28 (Scheme 3) was assembled starting from the preparation of the phosphodiester 26, as described in ref. 8. Coupling of the H-phosphonate 7 with dec-9-en-1-ol in pyridine in the presence of adamantane-1-carbonyl chloride, followed by oxidation of the resulting H-phosphonic diester with iodine in pyridine and subsequent dedimethoxytritylation with 1% TFA in CH₂Cl₂ (0 °C) gave the disaccharide phosphate derivative 26 in 90% overall yield. The pentaglycosyl diphosphate derivative 27 was prepared in 71% yield from the trisaccharide H-phosphonate 8 and compound 26 by using a similar sequence of reactions involving condensation, oxidation and detritylation. The last step of the chain-elongation, i.e. the coupling of the disaccharide H-phosphonate 7 and compound 27, followed by oxidation and detritylation gave the heptasaccharide derivative 28 (79%).

The deprotected heptaglycosyl triphosphate 5 was obtained

J. Chem. Soc., Perkin Trans. 1, 1998 2589

in 77% yield from compound **28** by O-debenzoylation with 0.25 mol dm⁻³ methanolic sodium methoxide followed by anion-exchange chromatography.

The trisaccharide phosphodiester 6 (Scheme 4) was syn-

Scheme 4 *Reagents:* i, (*a*) adamantane-1-carbonyl chloride, pyridine; (*b*) I₂, pyridine–water; ii, NaOMe, MeOH

thesized from 2,3,4,6-tetra-O-benzoyl-D-mannosyl H-phosphonate¹⁵ **29** and the monohydroxylic galactosylmannoside **30**⁷ as starting materials. Condensation of these compounds in pyridine in the presence of adamantane-1-carbonyl chloride, followed by *in situ* oxidation with iodine, gave the protected phosphodiester **31** (81%), which then was converted into the phosphorylated trisaccharide **6** by O-debenzoylation with methanolic sodium methoxide.

The structures for compounds **5**, **6**, **27**, **28** and **31** were confirmed by NMR and mass spectrometric data (see Experimental section). For the monophosphonates **31** and **6** the ³¹P NMR spectra exhibited only single signals, at $\delta_{\rm P} = -3.48$ and -1.11, respectively, which are characteristic of glycoside-linked phosphodiesters (*cf.* refs 7–10, 12, 15). The spectrum of the diphosphate **27** consisted of two signals at -2.28 (P) and -4.03(P'), whereas the ³¹P NMR spectra of the triphosphates **28** and **5** consisted of three and two signals, respectively: $\delta_{\rm P} = -2.33$ (P), -3.15 (P") and -4.02 (P') for the protected derivative **28**, and -1.13 (P) and -1.50 (P' + P") in the ratio 1:2 for the deprotected oligomer **5**.

The presence of the $(1\rightarrow 6)$ -phosphodiester linkages in compounds **5** and **6** was established from the C-1 and C-2 signals of the corresponding D-mannosyl units and the C-5 and C-6 signals of the corresponding D-galactosyl units in the ¹³C NMR spectra, while the presence of the $(1\rightarrow 1)$ -phosphodiester linkage at the reducing terminus of compound **5** was likewise confirmed by the C-1 and C-2 signals of the D-mannosyl and the dec-9-enyl units (see Experimental section). These signals were shifted as a result of the α - and β -effects of phosphorylation and were coupled with phosphorus (or broadened). The 1-O-phosphorylation of each D-mannose unit in the heptasaccharide **5** and D-Man' in the trisaccharide **6** was evident also from the characteristic values (7.4–7.5 Hz) of the $J_{1,P}$ -coupling constants in the ¹H NMR spectra. The α -configuration of the D-mannosyl phosphate fragments followed from the positions of the C-3

and C-5 resonances of each D-mannose unit in the heptasaccharide **5** and D-Man' in the trisaccharide **6**. The chemical shifts of these signals are close to those of C-3 and C-5 of α -Dmannopyranosyl phosphate, ¹⁶ taking into account the influence of the glycosyl substituents at position-4 (in compound **5**).

The relative molecular masses of the oligomers **5**, **6**, **27**, **28** and **31** were confirmed by ES(-) and ES(+) electrospray mass spectrometry. The dominant signals in the spectra corresponded to the pseudo-molecular ions for the monophosphates **6** $(m/z \ 721.1 \ [M - Et_3N - H]^-)$ and **31** $(m/z \ 1761.5 \ [M - Et_3N - H]^-; m/z \ 1864.2 \ [M + H]^+)$, the diphosphate **27** $(m/z \ 1342.1 \ [M - 2 \ Et_3N - 2 \ H]^{2^-})$ and the triphosphates **5** $(m/z \ 509.4 \ [M - 3 \ NH_3 - 3 \ H]^{3^-})$ and **28** $(m/z \ 1236.9 \ [M - 3 \ Et_3N - 3 \ H]^{3^-})$.

To summarize, the first chemical synthesis of a natural phosphoglycan long-chain fragment containing a glycotriosyl phosphate unit and the first chemical synthesis of a fragment of *Leishmania mexicana* LPG and PPG has been achieved using the glycosyl H-phosphonate method.

Experimental

General procedures

Mps were determined on a Reichert hot-plate apparatus and are uncorrected. Optical rotations were measured with JASCO DIP-360 and Perkin-Elmer 141 polarimeters; [a]_D-values are given in units of 10⁻¹ deg cm² g⁻¹. NMR spectra (¹H at 200 and 500 MHz, ¹³C{¹H} at 50.3 and 125 MHz, and ³¹P{¹H} at 81 and 202.5 MHz) were recorded with Bruker AM-200 and AM-500 spectrometers for solutions in CDCl₃, unless otherwise indicated. Chemical shifts (δ in ppm) are given relative to those for Me₄Si (for ¹H and ¹³C) and external aq. 85% H₃PO₄ (for ³¹P); J-values are given in Hz. ES mass spectra were recorded with a VG Quatro system (VG Biotech, UK). TLC was performed on Kieselgel 60 F254 (Merck) with detection under UV light or by charring with sulfuric acid-water-ethanol (15:85:5). Flash-column chromatography (FCC) was performed on Kieselgel 60 (0.040-0.063 mm) (Merck). Dichloromethane, acetonitrile and pyridine (for the H-phosphonate condensations) were freshly distilled from CaH₂. Solutions worked up were concentrated under reduced pressure at <40 °C.

2,4-Di-O-benzoyl-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)- β -D-galactopyranosyl-(1 \rightarrow 4)-1,2,3,6-tetra-O-benzoyl- α -D-manno-pyranose 11

To a stirred and cooled $(-30 \,^{\circ}\text{C})$ solution of the trichloroacetimidate 9^{9} (18.6 mg, 0.216 mmol) and the tetrabenzoate 10^{7} (117 mg, 0.196 mmol) in dry dichloromethane (3 cm³) under nitrogen was added triethylsilyl triflate (0.016 cm³, 0.07 mmol), whereafter the temperature was allowed to rise to 0 °C and stirring was continued for 1 h. Pyridine (0.2 cm³) was then added and the solvent was removed under reduced pressure. FCC [toluene–ethyl acetate, $(100:0) \longrightarrow (93:7)$] of the residue provided first 2,4-di-O-benzoyl-3-O-benzyl-6-O-(tert-butyldiphenylsilyl)- α -D-galactopyranosyl- $(1\rightarrow 4)$ -1,2,3,6-tetra-Obenzoyl-a-D-mannopyranose 13 (35 mg, 14%) as an amorphous solid (Found: C, 71.4; H, 5.55. C₇₇H₇₀O₁₇Si requires C, 71.4; H, 5.4%); $\delta_{\rm H}$ 0.95 (9 H, s, Me₃C), 3.72 (2 H, m, 6'-H₂), 4.17 (1 H, dd, J_{2',3'} 10.2, 3'-H), 4.23-4.45 (3 H, m, 5- and 5'-H, 6-H^a), 4.54 and 4.81 (2 H, AB q, J 12.0, CH₂Ph), 4.59 (1 H, t, $J_{3,4} = J_{4,5} = 9.0, 4-H$), 5.09 (1 H, dd, $J_{5,6b}$ 1.5, $J_{6a,6b}$ 11.0, 6-H^b), 5.53 (1 H, dd, J_{1',2'} 4.0, 2'-H), 5.71 (3 H, m, 1'-, 2- and 3-H), 6.16 (1 H, br d, $J_{3',4'}$ 3.0, 4'-H), 6.43 (1 H, $J_{1,2}$ 2.0, 1-H) and 6.95-8.15 (45 H, m, $9 \times Ph$). Continued elution gave the β -linked disaccharide derivative 11 (140 mg, 55%) as an amorphous solid; $[a]_{D}^{20}$ +62 (c 1, CHCl₃) (Found: C, 71.6; H, 5.3%); δ_{H} 0.91 (9 H, s, Me₃C), 3.27 (2 H, m, 6'-H₂), 3.49 (1 H, dd, J_{5',6a'} 5.0, $J_{5',6b'}$ 9.0, 5'-H), 3.64 (1 H, dd, $J_{3',4'}$ 3.0, 3'-H), 4.13 (1 H, br d, 5-H), 4.48 (2 H, m, 6-H₂), 4.50 (1 H, t, $J_{3,4} = J_{4,5} = 10.0$,

4-H), 4.51 and 4.82 (2 H, AB q, J 13.0, CH₂Ph), 4.69 (1 H, d,

 $J_{1',2'}$ 8.0, 1'-H), 5.44 (1 H, dd, $J_{2',3'}$ 10.5, 2'-H), 5.73 (1 H, dd, $J_{2,3}$ 3.3, 2-H), 5.85 (1 H, dd, 3-H), 5.88 (1 H, br d, 4'-H), 6.44 (1 H, $J_{1,2}$ 2.0, 1-H) and 6.62–8.15 (45 H, m, 9 × Ph).

Ethyl 4,6-*O*-benzylidene-3-*O*-chloroacetyl-1-thio-β-D-galactopyranoside 15

To a stirred and cooled (0 °C) solution of ethyl 4,6-Obenzylidene-1-thio-β-D-galactopyranoside¹³ 14 (936 mg, 3 mmol) and pyridine (1 cm³) in dichloromethane (20 cm³) was added dropwise a solution of chloroacetyl chloride (0.263 cm³, 3.3 mmol) in the same solvent (3 cm^3) during a period of 5 min. Stirring was continued for a further 30 min and then chloroform (100 cm³) was added to the mixture. The resulting solution was washed successively with cold 1 mol dm⁻³ hydrochloric acid, saturated aq. NaHCO₃ and water, dried (MgSO₄), and concentrated. FCC (benzene-ethyl acetate, 4:1) of the residue gave the chloroacetyl derivative 15 (687 mg, 59%), mp 183-186 °C, [a]²⁰_D +52 (c 1.75, CHCl₃) (Found: C, 52.8; H, 5.5. $C_{17}H_{21}ClO_6S$ requires C, 52.5; H, 5.4%); δ_H 1.36 (3 H, t, J 7.5, Me), 2.54 (1 H, d, J_{он,2} 2.1, OH), 2.80 (2 H, q AB q, J_{A,B} 12.8, CH₂Me), 3.58 (1 H, dt, J_{5,6} 1.8, 5-H), 4.02 (1 H, dd, J_{6a,6b} 12.5, 6-H^a), 4.08 (1 H, dt, $J_{1,2} = J_{2,3} = 9.5$, 2-H), 4.14 and 4.21 (2 H, AB q, J 15.1, CH₂Cl), 4.35 (1 H, dd, 6-H^b), 4.42 (1 H, d, 1-H), 4.46 (1 H, dd, J_{4,5} 0.8, 4-H), 4.96 (1 H, dd, J_{3,4} 3.5, 3-H), 5.50 (1 H, s, CHPh) and 7.33-7.55 (5 H, m, Ph). Also isolated was ethyl 4,6-O-benzylidene-2,3-di-O-chloroacetyl-1-thio-β-Dgalactopyranoside (233 mg, 17%).

Ethyl 2-*O*-benzylidene-3-*O*-chloroacetyl-1-thio-β-D-galactopyranoside 16

To a stirred solution of the chloroacetate 15 (2.56 mg, 6.59 mmol) in dichloromethane (20 cm³) were added pyridine (8 cm³, 100 mmol) and benzoyl chloride (4.6 cm³, 39.5 mmol), and the reaction mixture was stirred at rt for 1 h. TLC then showed no trace of the starting material and water was added to destroy an excess of benzoyl chloride. The reaction mixture was diluted with chloroform (200 cm³) and the resulting solution was washed successively with cold 1 mol dm⁻³ hydrochloric acid, water, saturated aq. NaHCO₃ and water, dried (MgSO₄) and concentrated. The residue was redissolved in benzene-ethyl acetate (9:1), the solution was filtered through a Kieselgel pad, and the filtrate was concentrated. After crystallization of the residue from ethyl acetate-hexane, the thiogalactoside 16 (2.75 g, 85%) had mp 172–174 °C; [a]²⁰_D +48 (c 2.4, CHCl₃) (Found: C, 58.4; H, 5.05. C₂₄H₂₅ClO₇S requires C, 58.5; H, 5.1%); δ_H 1.30 (3 H, t, J 7.5, Me), 2.85 (2 H, q AB q, J_{A,B} 12.6, CH₂Me), 3.66 (1 H, dt, J_{5,6} 1.5, 5-H), 3.94 and 4.03 (2 H, AB q, J 15.0, CH₂Cl), 4.08 (1 H, dd, *J*_{6a,6b} 12.5, 6-H^a), 4.40 (1 H, dd, 6-H^b), 4.52 (1 H, dd, J_{4,5} 1.0, 4-H), 4.66 (1 H, d, J_{1,2} 9.9, 1-H), 5.26 (1 H, dd, J_{3,4} 3.5, 3-H), 5.55 (1 H, s, CHPh), 5.78 (1 H, t, J_{2,3} 9.9, 2-H) and 7.35–8.08 (10 H, m, 2 × Ph).

2-O-Benzoyl-4,6-O-benzylidene-3-O-chloroacetyl-β-D-galacto-

pyranosyl-(1 \rightarrow 4)-1,2,3,6-tetra-O-benzoyl- α -D-mannopyranose 17 To a stirred mixture of the thiogalactoside 16 (2.3 g, 4.79 mmol), the tetrabenzoate 10 (3.58 g, 6 mmol) and molecular sieves 4 Å (10 g) in dry dichloromethane (40 cm³) was added methyl triflate (1.63 cm³, 14.4 mmol) and the stirring was continued at rt for a further 2.5 h. The reaction was quenched by addition of pyridine (1.5 cm³). The solids were filtered off and washed with chloroform, and the filtrate was washed with water, dried (MgSO₄), and concentrated. FCC (benzene–ethyl acetate, 95:5) of the residue gave a mixture (3.97 g) of the disaccharides 17 and 19, which was subsequently subjected to FCC (*n*-hexane–ethyl acetate, 3:1) to provide, first, 2-Obenzoyl-4,6-O-benzylidene-3-O-chloroacetyl- α -D-galactopyranosyl-(1 \rightarrow 4)-1,2,3,6-tetra-O-benzoyl- α -D-mannopyranose 19 (1 13 g, 23%) as an amorphous solid: $[n]^{20}$ +68 (c 2 CHCL)

(1.13 g, 23%) as an amorphous solid; $[a]_{\rm D}^{20}$ +68 (*c* 2, CHCl₃) (Found: C, 65.5; H, 4.6. C₅₆H₄₇ClO₁₇ requires C, 65.5; H, 4.6%); $\delta_{\rm H}$ 3.84 and 3.96 (2 H, AB q, *J* 15.0, CH₂Cl), 3.92 (3 H, m, 5'-H and 6'-H₂), 4.46 (1 H, dt, $J_{5,6}$ 2.0, 5-H), 4.51 (1 H, br d, $J_{3',4'}$ 3.1, 4'-H), 4.67 (1 H, dd, $J_{6a,6b}$ 11.5, 6-H^a), 4.75 (1 H, dd, 6-H^b), 4.96 (1 H, t, $J_{3,4} = J_{4,5} = 9.4$, 4-H), 5.48 (1 H, s, CHPh), 5.58 (1 H, dd, $J_{2',3'}$ 11.2, 3'-H), 5.72 (1 H, dd, 2'-H), 5.79 (2 H, m, 2- and 3-H), 5.92 (1 H, d, $J_{1',2'}$ 3.8, 1'-H), 6.56 (1 H, d, $J_{1,2}$ 1.7, 1-H) and 7.23–8.22 (30 H, m, 6 × Ph). Continued elution gave the β-*linked disaccharide derivative* **17** (2.59 g, 53%) as an amorphous solid, $[a]_{20}^{20}$ +99.5 (*c* 2.2, CHCl₃) (Found: C, 65.3; H, 4.6%); δ_{H} 2.87 (1 H, dt, $J_{4',5'} = J_{5',6b'} = 1.0, 5'-H)$, 3.55 (1 H, dd, $J_{5',6a'}$ 1.8, 6'-H^a), 3.84 (1 H, dd, $J_{6a',6b'}$ 12.8, 6'-H^b), 3.85 and 3.95 (2 H, AB q, J 15.2, CH₂Cl), 4.22 (1 H, dd, $J_{3',4'}$ 3.6, 4'-H), 4.31 (1 H, dt, $J_{5,6}$ 2.2, 5-H), 4.38 (1 H, dd, $J_{6a,6b}$ 12.1, 6-H^a), 4.67 (1 H, t, $J_{3,4} = J_{4,5} = 9.6, 4-H)$, 4.73 (1 H, dd, 6-H^b), 4.92 (1 H, d, $J_{1',2'}$ 8.0, 1'-H), 5.11 (1 H, dd, $J_{2',3'}$ 10.3, 3'-H), 5.36 (1 H, s, CHPh), 5.68 (1 H, dd, 2'-H), 5.87 (1 H, dd, $J_{2,3}$ 3.4, 2-H), 6.03 (1 H, dd, 3-H), 6.48 (1 H, d, $J_{1,2}$ 2.0, 1-H) and 7.10–8.20 (30 H, m, 6 × Ph).

2-*O*-Benzoyl-4,6-*O*-benzylidene-β-D-galactopyranosyl-(1→4)-1,2,3,6-tetra-*O*-benzoyl-α-D-mannopyranose 18

A solution of the disaccharide 17 (2.54 g, 2.47 mmol), thiourea (0.94 g, 12.35 mmol) and 2,6-lutidine (0.29 cm³, 2.47 mmol) in methanol (15 cm³)-dichloromethane (10 cm³) was heated at 65 °C for 3.5 h and then the mixture was concentrated. Chloroform was added to the residue and the resulting solution was washed in turn with 1 mol dm⁻³ hydrochloric acid, water, saturated aq. NaHCO₃ and water, dried (MgSO₄), and concentrated. FCC (benzene-ethyl acetate, 85:15) of the residue gave the monohydroxylic disaccharide derivative 18 (2.27 g, 96.5%) as an amorphous solid, [a]_D²⁰ +48.6 (c 1.6, CHCl₃) (Found: C, 67.9; H, 4.8. $C_{54}H_{46}O_{16}$ requires C, 68.2; H, 4.9%); δ_H 2.56 (1 H, br d, J_{OH,3'} 11.1, OH), 2.91 (1 H, br, 5'-H), 3.58 (1 H, dd, J_{5',6a'} 1.8, 6'-H^a), 3.79 (1 H, ddd, $J_{3',4'}$ 3.8, 3'-H), 3.83 (1 H, dd, $J_{5',6b'}$ 1.0, $J_{6a',6b'}$ 12.8, 6'-H^b), 4.03 (1 H, br d, 4'-H), 4.28 (1 H, dt, $J_{5,6}$ 2.2, 5-H), 4.47 (1 H, dd, $J_{6a,6b}$ 12.2, 6-H^a), 4.66 (1 H, t, $J_{3,4} = J_{4,5} = 9.6, 4$ -H), 4.69 (1 H, dd, 6-H^b), 4.81 (1 H, d, $J_{1',2'}$ 8.0, 1'-H), 5.37 (1 H, dd, J_{2',3'} 10.0, 2'-H), 5.40 (1 H, s, CHPh), 5.88 (1 H, dd, J_{2,3} 3.4, 2-H), 6.00 (1 H, dd, 3-H), 6.50 (1 H, d, J_{1,2} 2.0, 1-H) and 7.15–8.20 (30 H, m, 6 × Ph).

3-*O*-{2-Phenyldihydro-(3,4,6-tri-*O*-benzoyl-1,2-dideoxy- α -D-glucopyranoso)[2,1-*d*]-1,3-dioxol-2-yl}-2-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranosyl-(1 \rightarrow 4)-1,2,3,6-tetra-*O*-benzoyl- α -D-mannopyranose 21

Benzobromoglucose 20 was prepared from 1,2,3,4,6-penta-Obenzoyl-a-D-glucopyranose as described in ref. 17. To a stirred and cooled (0 °C) mixture of the disaccharide 18 (1.3 g, 1.37 mmol), silver triflate (1.02 g, 3.98 mmol), 2,6-di-tert-butylpyridine (0.49 cm³, 2.18 mmol) and molecular sieves 4 Å (1.5 g) in dry dichloromethane (20 cm³)-toluene (6 cm³) was added dropwise a solution of benzobromoglucose 20 (1.8 g, 2.74 mmol) in CH_2Cl_2 (8 cm³). After the addition was complete, the temperature was allowed to rise to 20 °C and stirring was continued for 2.5 h. The solids were filtered off and washed with chloroform, and the filtrate was washed successively with aq. sodium thiosulfate and water, dried (MgSO₄), and concentrated. FCC (benzene-ethyl acetate, 95:5) of the residue provided, first, the orthoester 21 (1.68 g, 80%) as an amorphous solid, $[a]_{D}^{23}$ +63 (c 1.13, CHCl₃); δ_{H} 2.67 (1 H, br, 5'-H), 3.40 (1 H, br d, $J_{6a',6b}$ 12.2, 6'-H^a), 3.80 (2 H, m, 3'-H and 6'-H^b), 4.80 (1 H, ddd, J_{5",6a"} 5.1, J_{5",6b"} 3.0, 5"-H), 4.20–4.35 (4 H, m, 4'and 5-H, 6- and 6"-H^a), 4.44 (1 H, dd, $J_{6a",6b"}$ 12.2, 6"-H^b), 4.60 (1 H, t, $J_{3,4} = J_{4,5} = 10.0, 4$ -H), 4.63 (1 H, dd, $J_{2'',3''}$ 3.0, 2"-H), 4.67 $(1 \text{ H}, \text{dd}, J_{5,6b} 2.0, J_{6a,6b} 12.0, 6-\text{H}^{b}), 4.79 (1 \text{ H}, \text{d}, J_{1',2'} 8.0, 1'-\text{H}),$ 5.17 (1 H, s, CHPh), 5.32 (1 H, dd, J_{4",5"} 8.5, 4"-H), 5.51 (1 H, dd, $J_{2',3'}$ 10.2, 2'-H), 5.53 (1 H, dd, $J_{3',4'}$ 1.5, 3"-H), 5.67 (1 H, d, $J_{1',2''}$ 5.0, 1"-H), 5.83 (1 H, dd, $J_{2,3}$ 3.5, 2-H), 5.96 (1 H, dd, 3-H), 6.45 (1 H, d, $J_{1,2}$ 2.0, 1-H) and 6.95–8.18 (50 H, m, 10 × Ph); $\delta_{\rm C}(inter alia) 61.91 (C-6), 63.93 (C-6"), 69.02 (C-2), 71.23 (C-3),$ 71.56 (C-5), 73.33 (C-4), 73.91 (C-3'), 91.20 (C-1), 97.61 (C-1"),

100.71 (C-1') and 101.35 (CHPh); ESMS (+) data: m/z 1528.5 [M]⁺ and 1545.4 [M + NH₃]⁺ (C₈₈H₇₂O₂₅ requires *M*, 1528.44). Continued elution gave the isomeric trisaccharide derivative **22** (310 mg, 15%).

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranosyl- $(1\rightarrow 4)$ -1,2,3,6-tetra-O-benzoyl- α -D-mannopyranose 22

A solution of benzobromoglucose 20 (1.32 g, 2 mmol) in dry acetonitrile (10 cm³) was added to a stirred solution of the disaccharide 18 (950 mg, 1 mmol), Hg(CN)₂ (500 mg, 2 mmol) and HgBr₂ (360 mg, 1 mmol) in the same solvent (15 cm³). The mixture was stirred at 20 °C for 18 h, then pyridine was added (0.5 cm^3) and the solvent was removed under reduced pressure. The residue was taken up in chloroform, the suspension was filtered to remove mercury salts, and the filtrate was washed successively with 1 mol dm⁻³ aq. KI and water, dried (MgSO₄), and concentrated. FCC (benzene-ethyl acetate, 93:7) of the residue gave the β , β -linked trisaccharide 22 (1.26 g, 82%) as an amorphous solid, [a]_D²² +78 (c 1.07, CHCl₃) (Found: C, 69.0; H, 4.7. $C_{88}H_{72}O_{25}$ requires C, 69.1; H, 4.7%); δ_{H} 2.81 (1 H, br, 5'-H), 3.46 (1 H, dd, $J_{5',6a'}$ 1.7, $J_{6a',6b'}$ 12.2, 6'-H^a), 3.83 (1 H, br d, 6'-H^b), 4.03 (1 H, dd, $J_{3',4'}$ 3.5, 3'-H), 4.07 (1 H, dt, dt, dt) $J_{5'',6a''} = J_{5'',6b''} = 3.5, 5''-H), 4.17$ (1 H, d, 4'-H), 4.19 (1 H, ddd, J_{5,6a} 2.8, 5-H), 4.31 (1 H, dd, J_{6a,6b} 12.0, 6-H^a), 4.41 (1 H, dd, $\begin{array}{l} J_{6a^{''},6b^{''}} \ 12.1, \ 6^{''}-\mathrm{H}^{\mathrm{a}}), \ 4.60 \ (1 \ \mathrm{H}, \ \mathrm{t}, \ J_{3,4} = J_{4,5} = 9.2, \ 4-\mathrm{H}), \ 4.65 \ (1 \ \mathrm{H}, \ \mathrm{d} d, \ J_{5,6b} \ 2.0, \ 6-\mathrm{H}^{\mathrm{b}}), \ 4.68 \ (1 \ \mathrm{H}, \ \mathrm{d} d, \ 6^{''}-\mathrm{H}^{\mathrm{b}}), \ 4.81 \ (1 \ \mathrm{H}, \ \mathrm{d}, \ J_{1'',2''} \ 7.8, \ \mathrm{d} d, \ J_{5,6b} \ 2.0, \ 6-\mathrm{H}^{\mathrm{b}}), \ 4.68 \ (1 \ \mathrm{H}, \ \mathrm{d} d, \ 6^{''}-\mathrm{H}^{\mathrm{b}}), \ 4.81 \ (1 \ \mathrm{H}, \ \mathrm{d}, \ J_{1'',2''} \ 7.8, \ \mathrm{d} d, \ J_{5,6b} \ 2.0, \ 6-\mathrm{H}^{\mathrm{b}}), \ 4.68 \ (1 \ \mathrm{H}, \ \mathrm{d} d, \ 6^{''}-\mathrm{H}^{\mathrm{b}}), \ 4.81 \ (1 \ \mathrm{H}, \ \mathrm{d}, \ J_{1'',2''} \ 7.8, \ \mathrm{d} d, \ J_{5,6b} \ 2.0, \ 6-\mathrm{H}^{\mathrm{b}}), \ 4.68 \ (1 \ \mathrm{H}, \ \mathrm{d} d, \ 6^{''}-\mathrm{H}^{\mathrm{b}}), \ 4.81 \ (1 \ \mathrm{H}, \ \mathrm{d}, \ J_{1'',2''} \ 7.8, \ \mathrm{d} d, \ J_{5,6b} \ L_{5,6b} \ L_{5,7b} \$ 1"-H), 5.13 (1 H, d, J_{1',2'} 7.8, 1'-H), 5.28 (1 H, s, CHPh), 5.46 (1 H, dd, $J_{2',3'}$ 9.5, 2"-H), 5.53 (1 H, dd, $J_{2',3'}$ 10.1, 2'-H), 5.64 (1 H, t, $J_{3',4'} = J_{4',5''} = 9.5, 4''-H$), 5.75 (1 H, t, 3''-H), 5.85 (1 H, dd, J_{2.3} 2-H) 5.95 (1 H, dd, 3-H), 6.44 (1 H, d, J_{1.2} 2.0, 1-H) and 6.95–8.20 (50 H, m, 10 × Ph).

2,3,4,6-Tetra-O-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -1,2,3,6-tetra-O-benzoyl- α -D-mannopyranose 23

A solution of the trisaccharide derivative 22 (1.1 g) in 80% aq. acetic acid was heated at 70 °C for 2 h, whereafter the mixture was concentrated and toluene was twice evaporated off from the residue. FCC [toluene-ethyl acetate, $(95:5) \longrightarrow (80:20)$] of the residue gave the trisaccharide diol 23 (0.93 g, 90%) as an amorphous solid, $[a]_{D}^{24}$ +56 (c 1.07, CHCl₃) (Found: C, 67.6; H, 4.7. C₈₁H₆₈O₂₅ requires C, 67.5; H, 4.75%); δ_H 2.87 (2 H, br, $2 \times OH$), 3.24 (1 H, t, $J_{5',6'}$ 5.0, 5'-H), 3.43 (2 H, m, 6'-H₂), 3.83 (1 H, dd, J_{3',4'} 3.0, 3'-H), 4.09 (3 H, m, 4'-, 5- and 5"-H), $4.24\,(1~{\rm H},\,{\rm dd},\,J_{5,6a}\,3.0,\,J_{6a,6b}\,12.1,\,6{\rm -H^a}),\,4.35\,(1~{\rm H},\,{\rm dd},\,J_{5',6a''}\,5.5,$ $J_{6a'',6b''}$ 12.5, 6"-H^a), 4.45 (1 H, dd, $J_{5,6b}$ 2.2, 6-H^b), 4.50 (1 H, t, $J_{3,4} = J_{4,5} = 9.5, 4$ -H), 4.71 (1 H, d, $J_{1',2''}$ 7.8, 1"-H), 4.75 (1 H, dd, 9.7, 2"-H), 5.46 (1 H, dd, $J_{2',3'}$ 10.0, 2'-H), 5.55 (1 H, t, $J_{3'',4''} = J_{4'',5''} = 9.7, 4''-H), 5.76$ (1 H, t, 3''-H), 5.81 (1 H, dd, $J_{2,3}$ 3.0, 2-H), 5.87 (1 H, dd, 3-H), 6.45 (1 H, d, J_{1,2} 2.2, 1-H) and 6.85–8.15 (45 H, m, 9 × Ph); $\delta_{\rm C}$, see Table 1.

2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl-6-*O*-(*p*,*p*'-dimethoxytrityl)- β -D-galactopyranosyl-(1 \rightarrow 4)-1,2,3,6-tetra-*O*-benzoyl- α -D-mannopyranose 24

The trisaccharide derivative **23** (400 mg, 0.278 mmol) was dried by evaporation of pyridine (2 × 10 cm³) therefrom. The residue was dissolved in pyridine (15 cm³), p,p'-dimethoxytriphenylmethyl chloride (140 mg, 0.413 mmol) was added, and the solution was kept for 24 h at 20 °C before benzoyl chloride (0.1 cm³, 0.834 mmol) was also added to the stirred mixture at 0 °C. After 16 h at 20 °C, the reaction mixture was diluted with CHCl₃ and washed successively with saturated aq. NaHCO₃ and water, dried (MgSO₄), and concentrated. FCC [toluene–ethyl acetate, (100:00) \longrightarrow (93:7)] of the residue gave the *dimethoxytrityl trisaccharide derivative* **24** (494 mg, 96%) as an amorphous solid, $[a]_{D}^{2D}$ +36.7 (*c* 1.12, CHCl₃) (Found: C, 70.5; H, 4.9. $\begin{array}{l} C_{109}H_{90}O_{28} \ \text{requires C, 70.85; H, 4.9\%}; \ \delta_{\rm H} \ 3.02 \ (1 \ \rm H, \ t, \ J_{5',6a'}=J_{6a',6b'}=8.8, 6'-{\rm H}^{\rm a}), 3.16 \ (1 \ \rm H, \ dd, \ J_{5',6b'} \ 5.0, \ 6'-{\rm H}^{\rm b}), 3.63 \ (6 \ \rm H, \ s, \ 2 \times MeO), \ 3.71 \ (1 \ \rm H, \ dd, \ 5'-{\rm H}), \ 4.04 \ (2 \ \rm H, \ m, \ 5- \ and \ 5''-{\rm H}), \ 4.21 \ (1 \ \rm H, \ dd, \ J_{3',4'} \ 3.5, \ 3'-{\rm H}), \ 4.42 \ (2 \ \rm H, \ \rm br, \ 6-{\rm H}_2), \ 4.56 \ (1 \ \rm H, \ dd, \ J_{3,4} \ 10.0, \ J_{4,5} \ 8.5, \ 4-{\rm H}), \ 4.66 \ (2 \ \rm H, \ m, \ 6''-{\rm H}_2), \ 4.77 \ (1 \ \rm H, \ dd, \ J_{1',2''} \ 8.0, \ 1''-{\rm H}), \ 4.92 \ (1 \ \rm H, \ dd, \ J_{1',2''} \ 7.8, \ 1'-{\rm H}), \ 5.31 \ (1 \ \rm H, \ dd, \ J_{2',3''} \ 9.0, \ 2''-{\rm H}), \ 5.62 \ (2 \ \rm H, \ m, \ 3''-and \ 4''-{\rm H}), \ 5.72 \ (1 \ \rm H, \ dd, \ J_{2,3} \ 3.3, \ 3-{\rm H}), \ 5.76 \ (1 \ \rm H, \ m, \ 2-{\rm H}), \ 6.03 \ (1 \ \rm H, \ dd, \ J_{1,2} \ 1.7, \ 1-{\rm H}) \ and \ 6.50-8.13 \ (63 \ \rm H, \ 11 \times {\rm Ph} \ and \ 2 \times {\rm C}_{6}{\rm H}_4); \ \delta_{\rm C}, \ {\rm see Table 1.} \end{array}$

2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl-6-*O*-(*p*,*p*'-dimethoxytrityl)- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzoyl- α -D-mannopyranose 25

The trisaccharide derivative 24 (390 mg, 0.211 mmol) was dried by evaporation of acetonitrile (4 cm³) therefrom. The residue was dissolved in the same solvent (14 cm³), 2 mol dm⁻³ Me₂NH in THF (0.64 cm³, 1.27 mmol) was added and the mixture was stirred at 20 °C with monitoring by TLC (toluene-ethyl acetate, 9:1). After 47 h, the mixture was concentrated to dryness and acetonitrile was evaporated off from the residue. FCC [tolueneethyl acetate, $(95:5) \longrightarrow (75:25)$] of the residue gave the 1*hydroxy derivative* **25** (324 mg, 88%) as an amorphous solid, $[a]_D^{22}$ +16.6 (c 0.94, CHCl₃) (Found: C, 70.0; H, 5.0. C₁₀₂H₈₆O₂₇ requires C, 70.3; H, 5.0%); $\delta_{\rm H}$ 3.12 (1 H, t, $J_{5',6a'} = J_{6a',6b'} = 8.5$, 6'-H^a), 3.23 (2 H, m, 6'-H^b and OH), 3.55 (1 H, m, 5'-H), 3.67 (6 H, s, 2 × MeO), 4.04 (1 H, t, $J_{5',6'}$ 4.0, 5"-H), 4.17 (1 H, dd, $J_{3',4'}$ 3.1, 3'-H), 4.22 (1 H, ddd, $J_{5,6a}$ 3.0, 5-H), 4.41 (1 H, dd, $J_{6a,6b}$ 12.5, 6-H^a), 4.47 (1 H, t, $J_{3,4} = J_{4,5} = 9.5$, 4-H), 4.55 (1 H, dd, $J_{5,6b}$ 2.0, 6-H^b), 4.64 (2 H, d, 6"-H₂), 4.74 (1 H, d, $J_{1',2''}$ 7.7, 1"-H), 4.92 (1 H, d, $J_{1',2'}$ 7.8, 1'-H), 5.26 (1 H, br, 1-H), 5.30 (1 H, dd, $J_{2',3'}$ 9.0, 2"-H), 5.44 (1 H, dd, $J_{2',3'}$ 10.0, 2'-H), 5.60 (3 H, m, 2-, 3"- and 4"-H), 5.71 (1 H, dd, J_{2,3} 3.1, 3-H), 5.96 (1 H, d, 4'-H) and 6.50–8.00 (58 H, m, $10 \times Ph$ and $2 \times C_6H_4$); $\delta_{\rm C}$, see Table 1.

2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl-6-*O*-(*p*,*p*'-dimethoxytrityl)- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-*O*-benzoyl- α -D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 8

The trisaccharide derivative 25 (220 mg, 0.126 mmol) was dried by evaporation of acetonitrile $(2 \times 10 \text{ cm}^3)$ therefrom. To a stirred solution of imidazole (133 mg, 1.95 mmol) in MeCN (12 cm³) at 0 °C was added phosphorus trichloride (0.051 cm³, 0.58 mmol) followed by triethylamine (0.29 cm³, 2.07 mmol). The mixture was stirred for 15 min, after which a solution of compound 25 in MeCN (12 cm³) was added dropwise over a period of 20 min at 0 °C. The mixture was stirred at 20 °C for 15 min and quenched with 1 mol dm⁻³ aq. triethylammonium (TEA) hydrogen carbonate (pH 7; 3 cm³). The clear solution was stirred for 15 min, CHCl₃ was added, and the organic layer was washed in turn with ice-water (twice) and cold 0.5 mol dm⁻³ ag. TEA hydrogen carbonate (twice), dried by filtration through cotton wool, and concentrated. FCC [CH2Cl2-MeOH-Et3N, $(98:1:1) \longrightarrow (93:6:1)$ of the residue gave the triosyl Hphosphonate 8 (209 mg, 86.5%) as an amorphous solid, $[a]_{D}^{24}$ +16.8 (c 1.09, CHCl₃); $\delta_{\rm H}$ 1.30 (9 H, t, 3 × *Me*CH₂), 3.03 (7 H, m, $3 \times \text{MeCH}_2$ and $6' \cdot \text{H}^{a}$), 3.20 (1 H, dd, $J_{6a',6b'}$ 8.6, $6' \cdot \text{H}^{b}$), 3.65 (6 H, s, 2 × MeO), 3.69 (1 H, dd, $J_{5a',6a'}$ 8.6, $J_{5',6b'}$ 5.2, 5'-H), 4.14 (1 H, ddd, $J_{5'',6a''}$ 3.6, 5"-H), 4.17 (1 H, br d, 5-H), 4.24 (1 H, dd, $J_{3',4'}$ 3.1), 4.45 (1 H, t, $J_{3,4} = J_{4,5} = 9.8$, 4-H), 4.50 (2 H, br, 6-H₂), 4.70 (1 H, dd, $J_{6a'',6b''}$ 12.0, 6"-H^a), 4.74 (1 H, d, $J_{1'',2''}$ 7.5, 1"-H), 4.75 (1 H, dd, $J_{5",60}$, 5.0, 6"-H^b), 5.01 (1 H, d, $J_{1',2'}$, 7.8, 1'-H), 5.35 (1 H, dd, $J_{2",3'}$, 8.8, 2"-H), 5.43 (1 H, dd, $J_{2',3'}$, 9.7, 2'-H), 5.62 (1 H, dd, $J_{2,3}$, 3.2, 3-H), 5.65 (3 H, m, 2-, 3"- and 4"-H), 5.71 (1 H, dd, J_{1,2} 1.8, J_{1,P} 9.0, 1-H), 6.10 (1 H, d, 4'-H), 7.00 (1 H, d, $J_{\rm H,P}$ 631.2, HP) and 6.55–8.05 (58 H, m, 10 × Ph and 2 × C₆H₄); $\delta_{\mathbf{P}}$ 0.56; $\delta_{\mathbf{C}}$, see Table 1; ESMS (-) data: *m*/*z* 1805.5 (100%, $[M - Et_3N - H]^-)$ (C₁₀₈H₁₀₂NO₂₉P requires *M*, 1907.63).

Table 1	¹³ C NMR data [$\delta_{\rm C}$ in ppm;	; J _{C.P} in Hz (in parer	theses)] for the pro	otected oligosaccharide de	erivatives 8 and 23–28 (in CDCl ₃)
---------	---	------------------------------------	----------------------	----------------------------	--

Residue	Atom	8 ^{<i>a</i>}	23	24 ^{<i>b</i>}	25 ^{<i>b</i>}	26 ^{<i>c</i>} (ref. 8)	27 ^{<i>c</i>}	28 ^{<i>c</i>}
Man	C-1 C-2 C-3 C-4 C-5 C-6	92.43br 70.72d (9.0) 69.70 72.65 70.38 63.00	91.21 69.14 70.54 72.78 72.29 62.26	91.01 69.54 69.87 72.92 71.90 63.08	91.99 71.49 69.82 73.04 69.63 63.30	93.62d (5.0) 70.81d (7.4) 70.00 73.09 70.00 62.61	93.38d (4.9) 70.84d (6.4) 69.77 73.43 69.82 62.28	93.47br 70.92d (7.0) 69.99 73.42 70.23 62.34
Gal	C-1 C-2 C-3 C-4 C-5 C-6	100.77 71.55 85.94 69.45 72.41 59.40	101.26 70.54 81.20 67.68 74.43 61.23	100.83 71.78 86.15 69.54 72.51 59.86	100.75 71.95 86.43 69.63 72.83 60.24	100.63 70.23 71.88 68.60 74.31 60.23	101.46 70.24 72.17 67.02 71.79d (8.3) 61.31d (5.8)	101.20 70.41 72.42 67.24 71.80d (7.0) 61.46d (5.2)
Man'	C-1 C-2 C-3 C-4 C-5 C-6						93.22br 70.59d (6.5) 69.55 72.58 70.11 62.22	93.17br 70.50d (7.0) 69.41 73.15 70.33 62.34
Gal'	C-1 C-2 C-3 C-4 C-5 C-6						100.28 71.50 78.67 69.40 73.61 59.24	100.49 71.66 78.41 69.04 71.89d (7.0) 63.15d (5.2)
Gle	C-1 C-2 C-3 C-4 C-5 C-6	100.77 71.55 71.95 69.02 71.55 62.43	101.26 71.38 72.29 69.14 71.38 61.91	101.05 71.77 72.10 69.09 71.90 62.07	101.08 72.14 72.28 69.40 72.20 62.86		101.22 71.05 72.02 68.68 71.98 62.12	100.59 71.37 72.19 68.50 72.00 62.25
Man"	C-1 C-2 C-3 C-4 C-5 C-6							93.47br 70.92d (7.0) 69.13 72.85 69.65 62.34
Gal″	C-1 C-2 C-3 C-4 C-5 C-6							100.49 70.41 71.83 68.89 73.23 60.16
Dec-9-enyl C=O	OCH ₂ CH ₂ OCH ₂ CH ₂ CH= =CH ₂	163.85	163.96	164.10 to	164.39	66.20d (5.5) 30.79d (7.5) 139.39 114.12 165.17 to	65.86d (5.8) 30.60d (5.8) 139.28 114.06 164.24 to	65.98d (6.0) 30.65d (6.1) 139.16 113.96 163.68 to
C ₆ H₄ and C ₆ H₅		165.83 126.47 to 129.87, 132.31 to 135.53, 112.72, 143.85, 157.97, 158.04	165.94 127.63 to 129.92, 132.57 to 133.69	165.89 126.59 to 130.24, 132.59 to 135.94, 113.12, 144.28, 158.22, 158.46	166.29 125.43 to 130.28, 132.66 to 135.95, 113.16, 144.39, 158.39, 158.47	165.90 128.35 to 131.13, 133.11 to 133.77	167.51 127.98 to 130.17, 132.63 to 133.12	166.93 127.89 to 129.93, 132.72 to 133.40

^{*a,b*} Additional signals of MeOC₆H₄Ph₂C [$\delta_{\rm C}$ 54.77–55.19 (MeO) and $\delta_{\rm C}$ 86.41–87.18 (Ar₃C)] were present. ^{*a,c*} Additional signals of Et₃NH⁺ [$\delta_{\rm C}$ 8.53–9.96 (CH₃) and $\delta_{\rm C}$ 45.39–45.93 (CH₂)] were present. ^{*c*} Additional signals of CCH₂C ($\delta_{\rm C}$ 25.56–25.78, 28.78–29.98 and 33.66–33.85) were present.

Dec-9-enyl 2,3,4-tri-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzoyl- α -D-mannopyranosyl phosphate 6-[2,3,4,6-tetra-O-benzoyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2,4-di-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzoyl- α -D-mannopyranosyl phosphate], bistriethylammonium salt 27 The preparation of the disaccharide phosphate **26** from the H-phosphonate **7** has been described previously.⁸ A mixture of compounds **8** (120 mg, 0.063 mmol) and **26** (98 mg, 0.076 mmol) was dried by evaporation of pyridine $(3 \times 1 \text{ cm}^3)$ therefrom. The residue was dissolved in pyridine (1 cm^3) ,

adamantane-1-carbonyl chloride (38 mg, 0.191 mmol) was added, and the mixture was stirred at 20 °C for 20-30 min, whereafter a freshly prepared solution of iodine (32 mg, 0.126 mmol) in 95% aq. pyridine (2 cm³) was added. After 20 min, CHCl₃ was added, and the solution was washed successively with cold 1 mol dm^{-3} aq. $Na_2S_2O_3$ and cold 0.5 mol dm^{-3} aq. TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. The residue was dissolved in CH₂Cl₂ (6 cm³) and 2% TFA in CH₂Cl₂ (6 cm³) was added at 0 °C. After 1 min, the solution was diluted with CHCl₃ and washed successively with ice-cold saturated aq. NaHCO₃ and 0.5 mol dm⁻³ aq. TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. FCC [CH₂Cl₂-MeOH-Et₃N, $(99.4:0.1:0.5) \longrightarrow (92.5:7:0.5)$ of the residue gave the pentasaccharide diphosphate derivative 27 (131 mg, 71%) as an amorphous solid; $[a]_{D}^{23}$ +40.7 (c 0.99, CHCl₃); δ_{P} -2.28 (P) and -4.03 (P'); δ_{c} , see Table 1; ESMS (-) data: m/z 1342.1 (100%, $[M - 2 Et_3N - 2 H]^{2-}) (C_{157}H_{162}N_2O_{47}P_2 requires M, 2888.98).$

Dec-9-enyl 2,3,4-tri-*O*-benzoyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzoyl- α -D-mannopyranosyl phosphate 6-{2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl- $(1\rightarrow 3)$]-2,4-di-*O*-benzoyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzoyl- α -D-mannopyranosyl phosphate 6-[2,3,4-tri-*O*-benzoyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzoyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzoyl- α -D-mannopyranosyl phosphate]}, tristriethylammonium salt 28

This compound was prepared by condensation of the disaccharide H-phosphonate **7** (81 mg, 0.057 mmol) and the pentasaccharide diphosphate **27** (110 mg, 0.038 mmol) in the presence of adamantane-1-carbonyl chloride (34 mg, 0.171 mmol), followed by oxidation with iodine (28 mg, 0.11 mmol) and detritylation with 1% TFA in CH₂Cl₂ as described for the preparation of compound **27**. FCC [CH₂Cl₂–MeOH–Et₃N, (98.7:0.3:1) \longrightarrow (94:5:1)] gave the heptasaccharide triphosphate derivative **28** (119 mg, 79%) as an amorphous solid, [al_{D}^{23} +54 (*c* 1.1, CHCl₃); δ_{P} –2.33 (P), –3.15 (P") and –4.02 (P'); δ_{C} , see Table 1; ESMS (–) data: *m/z* 1236.9 (100%, [M – 3 Et₃N – 3 H]^{3–}) and 1855.9 (10%, [M – 3 Et₃N – 2 H]^{2–}) (C₂₁₇H₂₂₂O₆₆N₃P₃ requires *M*, 4018.33).

Dec-9-enyl 2,3,4-tri-O-benzoyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-benzoyl- α -D-mannopyranoside 6-(2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl phosphate), triethylammonium salt 31

This compound was prepared by condensation of the mannosyl H-phosphonate 29⁵ (85 mg, 0.112 mmol) and the disaccharide 30^7 (108 mg, 0.096 mmol) in the presence of adamantane-1carbonyl chloride (56 mg, 0.282 mmol), followed by oxidation with iodine (48 mg, 0.19 mmol), as described for the synthesis of compound 27. FCC (CH₂Cl₂-MeOH-Et₃N, $(99:0:1) \longrightarrow (97.8:1.2:1)$ gave the trisaccharide phosphate 31 (147 mg, 81%) as an amorphous solid, $[a]_D^{23} + 11.3$ (*c* 1, CHCl₃); $\delta_{\rm H}$ 1.30 (19 H, m, 3 × MeCH₂ and 5 × CH₂), 1.63 (2 H, quintet, OCH₂CH₂CH₂), 2.06 (2 H, quartet, CH₂CH₂CH=), 3.00 (6 H, quartet, $3 \times \text{MeC}H_2$), 3.42 (1 H, q, $J_{6a',6b'} = J_{5',6a'} = J_{6a',P} = 10.0$, 6'-H^a), 3.45 and 3.69 (2 H, $2 \times \text{dt}$, ${}^2J_{\text{H,H}}$ 9.5, ${}^3J_{\text{H,H}}$ 6.5, OCH₂CH₂), 4.04 (1 H, ddd, $J_{6b',P}$ 7.8, 6'-H^b), 4.07 (1 H, dt, $J_{5,6}$ 2.7, 5-H), 4.24 (1 H, dd, $J_{5',6b'}$ 5.3, 5'-H), 4.26 (1 H, dd, $J_{6a,6b}$ 12.2, 6-H^a), 4.52 (1 H, dd, 6-H^b), 4.56 (1 H, t, $J_{3,4} = J_{4,5} = 9.6$, 4-H), 4.60 (2 H, br, 6"-H₂), 4.63 (1 H, dt, J_{5",6"} 2.0, 5"-H), 4.94 (1 H, dd, ${}^{2}J_{H,H}$ 1.5, ${}^{3}J_{H,H}$ 10.1, CH=CH₂), 4.96 (1 H, d, $J_{1,2}$ 1.8, 1-H), 5.01 (1 H, dd, ${}^{2}J_{H,H}$ 1.5, ${}^{3}J_{H,H}$ 17.1, CH=CH₂), 5.07 (1 H, d, $J_{1',2'}$ 7.9, 1'-H), 5.48 (1 H, dd, $J_{3',4'}$ 3.5, 3'-H), 5.60 (1 H, dd, J_{2,3} 3.5, 2-H), 5.62 (1 H, dd, J_{1",2"} 1.8, J_{1",P} 7.3, 1"-H), 5.73 (1 H, dd, $J_{2',3'}$ 10.3, 2'-H), 5.81 (2 H, m, 2"-H and =CH), 5.86 (1 H, dd, 3-H), 5.93 (1 H, d, 4'-H), 5.97 (1 H, dd, J_{2",3"} 3.2, 3"-H), 6.14 (1 H, t, $J_{3'',4''} = J_{4'',5''} = 10.2$, 4"-H) and 7.16–8.11 (50 H, m, $10 \times Ph$); δ_c 8.38 and 45.47 (Et) 25.91, 28.78, 28.96, 29.18, 29.58 and 33.70 (CH₂), 61.60 (d, J_{C,P} 5.2, C-6'), 62.29 (2 C, C-6 and 6"), 66.50 (C-4"), 67.21 (C-4'), 68.43 (OCH₂CH₂), 69.20 (C-3"),

69.70 (2 C, C-3 and -5), 70.06 (C-5"), 70.32 (C-2'), 70.49 (d, $J_{C,P}$ 9.0, C-2"), 71.00 (C-2), 72.00 (d, $J_{C,P}$ 7.7, C-5'), 72.41 (C-3'), 74.98 (C-4), 93.58 (d, $J_{C,P}$ 4.6, C-1"), 97.23 (C-1), 101.44 (C-1'), 114.01 (CH=CH₂), 128.01–129.88, 132.93 and 133.12 (Ph), 139.11 (CH=CH₂) and 164.76–165.87 (PhCO₂); δ_{P} –3.48; ESMS (+) data: m/z 1864.2 (100%, [M + H]⁺); ESMS (–) data: m/z 1761.5 (100%, [M – Et₃N – H]⁻) (C₁₀₄H₁₀₆NO₂₉P requires M, 1863.66).

Dec-9-enyl β -D-galactopyranosyl-(1 \rightarrow 4)- α -D-mannopyranoside

 6^{Gal} -(α -D-mannopyranosyl phosphate), triethylammonium salt 6 The trisaccharide phosphodiester 31 (118 mg) was dissolved in 0.05 mol dm⁻³ NaOMe in MeOH (20 cm³) and the mixture was stirred at 23 °C. After 2 h, the mixture was deionized with Dowex 50W-X4 (H⁺) resin, filtered, and immediately neutralized with Et₃N. After concentration, water $(5 \times 10 \text{ cm}^3)$ was evaporated off from the residue to remove methyl benzoate. The trisaccharide monophosphate 6 (52 mg, 99.7%) was thereby obtained as an amorphous solid, $[a]_{D}^{23} + 31.5$ (c 1, 9:1 MeOH–CHCl₃); $\delta_{\rm H}({\rm D}_2{\rm O})$ (inter alia) 1.30 (19 H, m, 3 × MeCH₂ and $5 \times CH_2$, 1.60 (2 H, br quintet, $OCH_2CH_2CH_2$), 2.03 (2 H, quartet, J 6.5, CH₂CH₂CH=), 4.48 (1 H, d, J_{1',2'} 7.6, 1'-H), 4.83 (1 H, br, 1-H), 5.43 (1 H, br d, $J_{1",P}$ 7.5, 1"-H) and 5.83 (1 H, ddt, $J_{\text{H,CH}_2}$ 6.5, $J_{\text{H,CH-cis}}$ 10.0, $J_{\text{H,CH-trans}}$ 17.1, CH₂CH=CH₂); $\delta_{\text{C}}(\text{D}_2\text{O})$ 9.41 and 48.40 (Et), 27.80, 29.80–30.50 and 35.10 (CH₂), 61.38 (C-6), 62.01 (C-6"), 65.42 (br, C-6'), 67.57 (C-4"), 69.04 (OCH₂CH₂), 69.22 (C-4'), 70.75 (C-3), 70.84 (C-2), 70.96 (C-3"), 71.58 (d, J_{C,P} 9.0, C-2"), 72.00 (C-2'), 72.32 (C-5), 73.73 (C-3'), 74.78 (d, J_{C,P} 8.3, C-5'), 75.01 (C-5"), 78.20 (C-4), 97.27 (d, J_{C,P} 5.9, C-1"), 100.71 (C-1), 104.40 (C-1'), 115.27 (CH=CH₂) and 141.60 (CH=CH₂); $\delta_{P}(D_{2}O) - 1.11$; ESMS (-): m/z 721.1 $(100\%, [M - Et_3N - H]^-) (C_{34}H_{60}NO_{19}P \text{ requires } M, 823.39).$

Dec-9-enyl β -D-galactopyranosyl-(1-4)- α -D-mannopyranosyl phosphate 6^{Gal} -{ β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-galactopyranosyl-(1 \rightarrow 4)- α -D-mannopyranosyl phosphate 6^{Gal} -[β -D-galactopyranosyl-(1 \rightarrow 4)- α -D-mannopyranosyl phosphate]}, trisammonium salt 5

The protected heptasaccharide 28 (50 mg) was dissolved in 0.25 mol dm⁻³ NaOMe in MeOH (3.5 cm³) and the mixture was kept for 24 h at 22 °C, followed by work-up as in the preceding experiment. TLC (10:10:3 CHCl₃-MeOH-water) of the residue then revealed the formation of a minor, fast running, UV-active product in addition to the major one, which was UV-inactive. After additional treatment with 0.25 mol dm⁻³ NaOMe in MeOH (19 h; 22 °C) followed by work-up as described above, the residue was applied to a column (18×1.5 cm) of Fractogel TSK DEAE-650 (S) (HCO3⁻-form) (Merck) eluted with a linear gradient of aq. NH_4HCO_3 (0 \longrightarrow 0.3 mol dm⁻³) in 3:2 water-propan-2-ol at 1 cm³ min⁻¹ to afford the heptasaccharide trisphosphate 5 (15 mg, 77%) as an amorphous solid, $[a]_{D}^{22}$ +29.7 (c 1, MeOH); $\delta_{H}(D_{2}O)$ (inter alia) 1.30 (10 H, m, $5 \times CH_2$), 1.62 (2 H, quintet, J 6.8, $OCH_2CH_2CH_2$), 2.05 (2 H, quartet, J 6.8, CH₂CH₂CH=), 4.44 (1 H, d, J_{1,2} 7.9, 1-H, Gal'), 4.47 (1 H, d, J_{1,2} 7.7, 1-H, Gal), 4.52 (1 H, d, J_{1,2} 8.0, 1-H, Gal"), 4.67 (1 H, d, J_{1,2} 7.7, 1-H, Glc), 4.96 (1 H, br d, J 10.2, CH=CH₂), 5.05 (1 H, br d, J 1.70, CH=CH₂), 5.40 (1 H, br d, $J_{1,P}$ 7.5, 1-H, Man), 5.44 (2 H, br d, $J_{1,P}$ 7.4, 1-H, Man' and 1-H, Man") and 5.92 (1 H, ddt, J_{H,CH_2} 6.5, CH₂CH₂CH₂); $\delta_C(D_2O)$ 25.92, 29.15–29.51 and 34.12 (CH₂), 30.84 (d, $J_{C,P}$ 5.9, OCH₂CH₂), 61.23 (2 C) and 61.33 (C-6, Man, Man' and Man"), 61.54 (C-6, Glc), 62.14 (C-6, Gal"), 65.39 (2 C, br, C-6, Gal and Gal'), 67.83 (d, J_{C.P} 5.2 OCH₂CH₂), 68.94 (C-4, Gal'), 69.17 (C-4, Gal), 69.72 (3 C, C-3, Man, Man' and Man"), 69.84 (C-4, Gal"), 70.46 (C-4, Glc), 71.04 (3 C, br, C-2, Man, Man' and Man"), 71.89 (C-2, Gal and Gal"), 72.03 (C-2, Gal'), 73.23, 73.37, 73.43, 73.55 and 73.59 (C-3, Gal, and Gal", C-5, Man, Man' and Man"), 74.35 (C-2, Glc), 74.46 (d, J_{C,P} 7.4, C-5, Gal), 74.80 (d, J_{CP} 7.4, C-5, Gal'), 76.42 (C-5, Glc), 76.57 (C-3, Glc), 76.80 (C-5, Gal"), 76.94 (C-4, Man"), 77.98 (2 C, C-4, Man and Man'), 82.87 (C-3, Gal'), 96.70 (d, J_{C,P} 6.1, Man'), 96.94 (2 C, d, J_{C.P.} 6.1, C-1, Man and Man"), 104.04 (C-1, Gal), 104.10 (C-1, Gal'), 104.38 (C-1, Gal"), 104.89 (C-1, Glc), 115.00 (CH₂=CH) and 141.53 (CH₂=CH); $\delta_{P}(D_{2}O) -1.13$ (P) and -1.50 (P' + P'') (ratio 1:2); ESMS (-): m/z 509.4 (100%, $[M - 3 NH_3 - 3 H]^{3-}$), 764.7 (26, $[M - 3 NH_3 - 2 H]^{2-}$) and 775.2 (26, $[M - 3 NH_3 - 3 H + Na]^{2-}$) (C₅₂H₁₀₂N₃O₄₅P₃ requires M, 1581.50).

Acknowledgements

This work and A. P. H. were supported by a Wellcome Trust Grant 048564/Z/96/Z. The research of Y. E. T. and A. V. N. was supported by an International Research Scholar's award to A. V. N. from the Howard Hughes Medical Institute.

References

- 1 Part 7, A. Crossman, Jr., J. S. B. Brimacombe and M. A. J. Ferguson, J. Chem. Soc., Perkin Trans. 1, 1997, 2769.
- 2 M. J. McConville and M. A. J. Ferguson, Biochem. J., 1993, 294, 305
- 3 M. J. McConville, L. F. Schnur, C. Jaffe and P. Schneider, Biochem. J., 1995, 310, 807.
- 4 T. Ilg, R. Etges, P. Overath, M. J. McConville, J. E. Thomas-Oates, J. Thomas, S. W. Homans and M. A. J. Ferguson, J. Biol. Chem., 1992, 267, 6834.
- 5 T. Ilg, P. O. Overath, M. A. J. Ferguson, T. Rutherford, D. G. Campbell and M. J. McConville, J. Biol. Chem., 1994, 269, 24 073.

- 6 T. Ilg, Y. D. Stierhof, D. Craik, R. Simpson, E. Handman and A. Bacic, J. Biol. Chem., 1996, 271, 21 583.
- 7 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1995, 1977.
- 8 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S.
- Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1996, 1559. 9 A. V. Nikolaev, G. M. Watt, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1997, 969.
- 10 A. V. Nikolaev, J. A. Chudek and M. A. J. Ferguson, Carbohydr. Res., 1995, 272, 179.
- 11 G. M. Brown, A. R. Millar, C. Masterson, J. S. Brimacombe, A. V. Nikolaev and M. A. J. Ferguson, Eur. J. Biochem., 1996, 242, 410.
- 12 A. V. Nikolaev, I. A. Ivanova and V. N. Shibaev, Carbohydr. Res., 1993, 242, 91.
- 13 S. Sato, Y. Ito and T. Ogawa, Carbohydr. Res., 1986, 155, c1.
- 14 N. K. Kochetkov and A. F. Bochkov, in Methods in Carbohydrate Chemistry, ed. R. L. Whistler and J. N. BeMiller, Academic Press, New York and London, Vol. VI, 1972, pp. 480-486.
- 15 A. V. Nikolaev, I. A. Ivanova, V. N. Shibaev and N. K. Kochetkov, Carohydr. Res., 1990, 204, 65.
- 16 J. V. O'Conner, H. A. Nunez and R. Barker, Biochemistry, 1979, 18, 500
- 17 V. I. Betaneli, M. V. Ovchinnikov, L. V. Backinowsky and N. K. Kochetkov, Carbohydr. Res., 1980, 84, 211.

Paper 8/02747A Received 14th April 1998 Accepted 2nd June 1998